Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.728
Filtrar
1.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497895

RESUMO

Cells utilize multiple mechanisms to maintain mitochondrial homeostasis. We recently characterized a pathway that remodels mitochondria in response to metabolic alterations and protein overload stress. This remodeling occurs via the formation of large membranous structures from the mitochondrial outer membrane called mitochondrial-derived compartments (MDCs), which are eventually released from mitochondria and degraded. Here, we conducted a microscopy-based screen in budding yeast to identify factors that regulate MDC formation. We found that two phospholipids, cardiolipin (CL) and phosphatidylethanolamine (PE), differentially regulate MDC biogenesis. CL depletion impairs MDC biogenesis, whereas blocking mitochondrial PE production leads to constitutive MDC formation. Additionally, in response to metabolic MDC activators, cellular and mitochondrial PE declines, and overexpressing mitochondrial PE synthesis enzymes suppress MDC biogenesis. Altogether, our data indicate a requirement for CL in MDC biogenesis and suggest that PE depletion may stimulate MDC formation downstream of MDC-inducing metabolic stress.


Assuntos
Cardiolipinas , Mitocôndrias , Fosfatidiletanolaminas , Saccharomycetales , Cardiolipinas/metabolismo , Homeostase , Mitocôndrias/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Saccharomycetales/citologia , Saccharomycetales/metabolismo
2.
Cell Metab ; 36(3): 617-629.e7, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340721

RESUMO

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triglyceride (TG) synthesis. DGAT2 deletion in mice lowers liver TGs, and DGAT2 inhibitors are under investigation for the treatment of fatty liver disease. Here, we show that DGAT2 inhibition also suppressed SREBP-1 cleavage, reduced fatty acid synthesis, and lowered TG accumulation and secretion from liver. DGAT2 inhibition increased phosphatidylethanolamine (PE) levels in the endoplasmic reticulum (ER) and inhibited SREBP-1 cleavage, while DGAT2 overexpression lowered ER PE concentrations and increased SREBP-1 cleavage in vivo. ER enrichment with PE blocked SREBP-1 cleavage independent of Insigs, which are ER proteins that normally retain SREBPs in the ER. Thus, inhibition of DGAT2 shunted diacylglycerol into phospholipid synthesis, increasing the PE content of the ER, resulting in reduced SREBP-1 cleavage and less hepatic steatosis. This study reveals a new mechanism that regulates SREBP-1 activation and lipogenesis that is independent of sterols and SREBP-2 in liver.


Assuntos
Diacilglicerol O-Aciltransferase , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Diacilglicerol O-Aciltransferase/metabolismo , Retículo Endoplasmático/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
3.
Nutrition ; 120: 112356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354460

RESUMO

BACKGROUND: Cancer associated cachexia is characterized by the significant loss of adipose tissue, leading to devastating weight loss and muscle wasting in the majority of cancer patients. The effects and underlying mechanisms of degradation metabolites on adipocytes in cachectic patients remain poorly understood. To address this knowledge gap, we conducted a comprehensive study combining lipidomic analysis of subcutaneous and visceral adipose tissue with transcriptomics data from the database to investigate the mechanisms of lipid regulation in adipocytes. METHODS: We collected subcutaneous and visceral adipose tissue samples from cachectic and noncachectic cancer patients. Lipidomic analysis was performed to identify differentially expressed lipids in both types of adipose tissue. Additionally, transcriptomics data from the GEO database were analyzed to explore gene expression patterns in adipocytes. Bioinformatics analysis was employed to determine the enrichment of differentially expressed genes in specific pathways. Furthermore, molecular docking studies were conducted to predict potential protein targets of specific lipids, with a focus on the PI3K-Akt signaling pathway. Western blot analysis was used to validate protein levels of the identified target gene, lysophosphatidic acid receptor 6 (LPAR6), in subcutaneous and visceral adipose tissue from cachectic and noncachectic patients. RESULTS: Significant lipid differences in subcutaneous and visceral adipose tissue between cachectic and noncachectic patients were identified by multivariate statistical analysis. Cachectic patients exhibited elevated Ceramides levels and reduced CerG2GNAc1 levels (P < 0.05). A total of 10 shared lipids correlated with weight loss and IL-6 levels, enriched in Sphingolipid metabolism, GPI-anchor biosynthesis, and Glyceropholipid metabolism pathways. LPAR6 expression was significantly elevated in both adipose tissues of cachectic patients (P < 0.05). Molecular docking analysis indicated strong binding of Phosphatidylethanolamine (PE) (18:2e/18:2) to LPAR6. CONCLUSIONS: Our findings suggest that specific lipids, including PE(18:2e/18:2), may mitigate adipose tissue wasting in cachexia by modulating the expression of LPAR6 through the PI3K-Akt signaling pathway. The identification of these potential targets and mechanisms provides a foundation for future investigations and therapeutic strategies to combat cachexia. By understanding the underlying lipid regulation in adipocytes, we aim to develop targeted interventions to ameliorate the devastating impact of cachexia on patient outcomes and quality of life. Nevertheless, further studies and validation are warranted to fully elucidate the intricate mechanisms involved and translate these findings into effective clinical interventions.


Assuntos
Caquexia , Neoplasias , Humanos , Caquexia/etiologia , Caquexia/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Qualidade de Vida , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipólise , Tecido Adiposo/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Redução de Peso
4.
Angew Chem Int Ed Engl ; 63(9): e202314710, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38230815

RESUMO

The vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic. Here we report that 15-lipoxygenase (15LOX) exhibits unexpectedly high pro-ferroptotic peroxidation activity towards di-PUFA-PEs. We revealed that peroxidation of several molecular species of di-PUFA-PEs occurred early in ferroptosis. Ferrostatin-1, a typical ferroptosis inhibitor, effectively prevented peroxidation of di-PUFA-PEs. Furthermore, co-incubation of cells with di-AA-PE and 15LOX produced PUFA-PE peroxidation and induced ferroptotic death. The decreased contents of di-PUFA-PEs in ACSL4 KO A375 cells was associated with lower levels of di-PUFA-PE peroxidation and enhanced resistance to ferroptosis. Thus, di-PUFA-PE species are newly identified phospholipid peroxidation substrates and regulators of ferroptosis, representing a promising therapeutic target for many diseases related to ferroptotic death.


Assuntos
Araquidonato 15-Lipoxigenase , Fosfatidiletanolaminas , Fosfatidiletanolaminas/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Morte Celular , Fosfolipídeos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Peroxidação de Lipídeos
5.
Plant Mol Biol ; 113(4-5): 237-247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38085407

RESUMO

Modulation of the plant defense response by bioactive molecules is of increasing interest. However, despite plant cell lipids being one of the major cellular components, their role in plant immunity remains elusive. We found that the exogenous application of the cell-membrane localized phospholipid lyso-phosphatidylethanolamine (LPE) reprograms the plant transcript profile in favor of defense-associated genes thereby priming the plant immune system. Exogenous LPE application to different Arabidopsis accessions increases resistance against the necrotrophic pathogens, Botrytis cinerea and Cochliobolus heterostrophus. We found that the immunity-promoting effect of LPE is repealed in the jasmonic acid (JA) receptor mutant coi1, but multiplied in the JA-hypersensitive mutant feronia (fer-4). The JA-signaling repressor JAZ1 is degraded following LPE administration, suggesting that JA-signaling is promoted by LPE. Following LPE-treatment, reactive oxygen species (ROS) accumulation is affected in coi1 and fer-4. Moreover, FER signaling inhibitors of the RALF family are strongly expressed after LPE application, and RALF23 is internalized in stress granules, suggesting the LPE-mediated repression of FER-signaling by promoting RALF function. The in-situ increase of LPE-abundance in the LPE-catabolic mutants lpeat1 and lpeat2 elevates plant resistance to B. cinerea, in contrast to the endogenous LPE-deficient mutant pla2-alpha. We show that LPE increases plant resistance against necrotrophs by promoting JA-signaling and ROS-homeostasis, thereby paving the way for the LPE-targeted genomic engineering of crops to raise their ability to resist biotic threats.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia , Arabidopsis/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Homeostase , Doenças das Plantas/genética , Botrytis/metabolismo , Regulação da Expressão Gênica de Plantas
6.
BMC Plant Biol ; 23(1): 602, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031030

RESUMO

BACKGROUND: Leymus chinensis (L. chinensis) is a perennial native forage grass widely distributed in the steppe of Inner Mongolia as the dominant species. Calcium (Ca) is an essential mineral element important for plant adaptation to the growth environment. Ca limitation was previously shown to strongly inhibit Arabidopsis (Arabidopsis thaliana) seedling growth and disrupt plasma membrane stability and selectivity, increasing fluid-phase-based endocytosis and contents of all major membrane lipids. RESULTS: In this study, we investigated the significance of Ca for L. chinensis growth and membrane stability relative to Arabidopsis. Our results showed that Ca limitation did not affect L. chinensis seedling growth and endocytosis in roots. Moreover, the plasma membrane maintained high selectivity. The lipid phosphatidylcholine (PC): phosphatidylethanolamine (PE) ratio, an indicator of the membrane stability, was five times higher in L. chinensis than in Arabidopsis. Furthermore, in L. chinensis, Ca limitation did not affect the content of any major lipid types, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) activity, showing an opposite pattern to that in Arabidopsis. L. chinensis roots accumulated higher contents of PC, phosphatidylinositol (PI), monogalactosyldiacylglycerol (MGDG), phosphatidylglycerol (PG), cardiolipin (CL), digalactosyldiacylglycerol (DGDG), and lysophosphatidylcholine (LPC) but less phosphatidylethanolamine (PE), diacylglycerol (DAG), triacylglycerolv (TAG), phosphatidylserine (PS), lysobisphosphatidic acids (LPAs), lysophosphatidylethanolamine (LPE), and lysophosphatidylserine (LPS) than Arabidopsis roots. Moreover, we detected 31 and 66 unique lipids in L. chinensis and Arabidopsis, respectively. CONCLUSIONS: This study revealed that L. chinensis roots have unique membrane lipid composition that was not sensitive to Ca limitation, which might contribute to the wider natural distribution of this species.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Fosfatidiletanolaminas/metabolismo , Lipídeos de Membrana/metabolismo , Poaceae/metabolismo
7.
Chem Phys Lipids ; 257: 105349, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838345

RESUMO

BACKGROUND /OBJECTIVE: The phospholipid 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) comprises two fatty acid chains: glycerol, phosphate, and ethanolamine. PE participates in critical cellular processes such as apoptosis and autophagy, which places it as a target for designing new therapeutic alternatives in diseases such as pulmonary fibrosis. Therefore, this study aimed obtain PE through a six-step organic synthesis pathway and determine its biological effect on apoptosis induction in normal human lung fibroblasts (NHLF). METHODOLOGY: The first step of the organic synthesis route began with protected glycerol that was benzylated at sn-3; later, it was deprotected to react with palmitic acid at sn-1, sn-2. To remove the benzyl group, hydrogenation was performed with palladium on carbon (Pd/C); subsequently, the molecule was phosphorylated in sn-3 with phosphorus oxychloride and triethylamine, and the intermediate was hydrolyzed in an acid medium to obtain the final compound. After PE synthesis, apoptosis assessment was performed: apoptosis was induced using exposure to annexin V-FITC/propidium iodide-ECD (PI) and quantified using flow cytometry. The experiments were performed in three NHLF cell lines with different concentrations of PE 10, 100 and 1000 µg/mL for 24 and 48 h. RESULTS: The PE obtained by organic synthesis presented a melting point of 190-192 °C, a purity of 95%, and a global yield of 8%. The evaluation of apoptosis with flow cytometry showed that at 24 h, exposure to PE 10, 100, and 1000 µg/mL induces early apoptosis in 19.42%- 25.54%, while late apoptosis was only significant P < 0.05 in cells challenged with 100 µg/mL PE. At 48 h, NHLF exposed to PE 10, 100, and 1000 µg/mL showed decreasing early apoptosis: 28.69-32.16%, 12.59-18.84%, and 10.91-12.61%, respectively. The rest of the NHLF exposed to PE showed late apoptosis: 12.03-16-42%, 11.04-15.94%, and 49.23-51.28%. Statistical analysis showed a significance P < 0.05 compared to the control. CONCLUSION: The organic synthesis route of PE allows obtaining rac-1,2-O-Dipalmitoyl-glycero-3-phosphoethanolamine (1), which showed an apoptotic effect on NHLF.


Assuntos
Glicerol , Fosfatidiletanolaminas , Humanos , Fosfatidiletanolaminas/metabolismo , Apoptose , Fibroblastos/metabolismo , Pulmão/metabolismo
8.
Free Radic Biol Med ; 208: 458-467, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678654

RESUMO

Ferroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments. Simulations of 15LOX-1/PEBP1 complex dynamics and interactions with lipids revealed that association with the membrane triggers a conformational change in the complex. This conformational change facilitates the access of stearoyl/arachidonoyl-PE (SAPE) substrates to the catalytic site. Furthermore, the binding of SAPE promotes tight interactions within the complex and induces further conformational changes that facilitate the oxidation reaction. The reaction yields two hydroperoxides as products, 15-HpETE-PE and 12-HpETE-PE, at a ratio of 5:1. A significant effect of PEBP1 is observed only on the predominant product. Moreover, combined experiments and simulations consistently demonstrate the significance of PEBP1 P112E mutation in generating ferroptotic cell death signals.


Assuntos
Araquidonato 15-Lipoxigenase , Ferroptose , Proteína de Ligação a Fosfatidiletanolamina , Morte Celular , Ferroptose/fisiologia , Oxirredução , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Humanos , Animais , Suínos
9.
Biol Sex Differ ; 14(1): 66, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770949

RESUMO

BACKGROUND: We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal-fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex. METHODS: In maternal, umbilical cord plasma and placentas from obese women (11 female/5 male infants) and normal weight women (9 female/7 male infants), all PC and PE species containing DHA and ARA were analyzed by LC-MS/MS. Placental protein expression of enzymes involved in phospholipid synthesis, were determined by immunoblotting. All variables were compared between control vs obese groups and separated by fetal sex, in each sample using the Benjamini-Hochberg false discovery rate adjustment to account for multiple testing. RESULTS: Levels of ester PC containing DHA and ARA were profoundly reduced by 60-92% in male placentas of obese mothers, while levels of ether and plasmalogen PE containing DHA and ARA were decreased by 51-84% in female placentas. PLA2G4C abundance was lower in male placentas and LPCAT4 abundance was lower solely in females in obesity. In umbilical cord, levels of ester, ether and plasmalogen PC and PE with DHA were reduced by 43-61% in male, but not female, fetuses of obese mothers. CONCLUSIONS: We found a fetal sex effect in placental PE and PC ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.


Docosahexaenoic acid (DHA) is a critical omega 3 long chain polyunsaturated fatty acid (LCPUFA) for fetal brain development. We have recently reported that maternal obesity reduces placental transport capacity for LysophosPhatidylCholine-DHA (LPC-DHA), a preferred form for transfer of DHA to the fetal brain, but only in male fetuses. Other important lipids, the plasmalogen phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are considered DHA reservoirs, but its roles in the maternal­fetal unit are largely unexplored. We examined these lipid species in maternal and fetal circulation and in placental tissue to uncover potential novel roles for ether and plasmalogen lipids in the regulation of placenta delivery of these vital nutrients in pregnancies complicated by obesity depending of fetal sex. We demonstrated for the first time, that female fetuses of obese mothers decrease placental ether and plasmalogen PE containing DHA and arachidonic acid (ARA, omega 6), and show a high fetal­placental adaptability and placental reserve capacity that can maintain the PC-LCPUFA synthesis and the transfer of these crucial species to the fetus to preserve brain development. Our study also demonstrated that male fetuses, in response to maternal obesity, reduce the placental ester PC species containing DHA and ARA and reduce the ether and plasmalogen PE reservoir of DHA and ARA in fetal circulation. Our findings support a fetal sex effect in placental ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.


Assuntos
Obesidade Materna , Placenta , Lactente , Feminino , Humanos , Masculino , Gravidez , Placenta/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Plasmalogênios/metabolismo , Éter , Obesidade Materna/complicações , Obesidade Materna/metabolismo , Caracteres Sexuais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Obesidade/metabolismo , Etil-Éteres/metabolismo , Éteres/metabolismo
11.
ACS Chem Biol ; 18(8): 1891-1904, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37531659

RESUMO

N-Acyl-phosphatidylethanolamine hydrolyzing phospholipase D (NAPE-PLD) is a zinc metallohydrolase that hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to form N-acyl-ethanolamines (NAEs) and phosphatidic acid. Several lines of evidence suggest that reduced NAPE-PLD activity could contribute to cardiometabolic diseases. For instance, NAPEPLD expression is reduced in human coronary arteries with unstable atherosclerotic lesions, defective efferocytosis is implicated in the enlargement of necrotic cores of these lesions, and NAPE-PLD products such as palmitoylethanolamide and oleoylethanolamide have been shown to enhance efferocytosis. Thus, enzyme activation mediated by a small molecule may serve as a therapeutic treatment for cardiometabolic diseases. As a proof-of-concept study, we sought to identify small molecule activators of NAPE-PLD. High-throughput screening followed by hit validation and primary lead optimization studies identified a series of benzothiazole phenylsulfonyl-piperidine carboxamides that variably increased activity of both mouse and human NAPE-PLD. From this set of small molecules, two NAPE-PLD activators (VU534 and VU533) were shown to increase efferocytosis by bone-marrow derived macrophages isolated from wild-type mice, while efferocytosis was significantly reduced in Napepld-/- BMDM or after Nape-pld inhibition. Together, these studies demonstrate an essential role for NAPE-PLD in the regulation of efferocytosis and the potential value of NAPE-PLD activators as a strategy to treat cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Fosfolipase D , Camundongos , Humanos , Animais , Fosfatidiletanolaminas/metabolismo , Encéfalo/metabolismo , Macrófagos/metabolismo , Doenças Cardiovasculares/metabolismo
12.
Mol Nutr Food Res ; 67(18): e2200321, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439463

RESUMO

SCOPE: Dietary supplementation of docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) can alter the lipidome profiles of adipocytes, thereby counteract obesity. DHA/EPA in the form of phospholipids demonstrates higher bioavailability than triglyceride or ethyl ester (EE), but their effects on the lipidome and metabolic changes during obesity are still unknown. METHODS AND RESULTS: High-fat diet-induced obese mice are treated with different molecular forms of EPA, and EPA supplemented as phosphoethanolamine plasmalogens (PlsEtn) has a superior effect on reducing fat mass accumulation than phosphatidylcholine (PC) or EE. The lipidomics analysis indicates that EPA in form of PlsEtn but not PC or EE significantly decreases total PC and sphingomyelin content in white adipose tissue (WAT). Some specific polyunsaturated fatty acid -containing PCs and ether phospholipids are increased in EPA-PlsEtn-fed mice, which may attribute to the upregulation of unsaturated fatty acid biosynthesis and fatty acid elongation reactions in WAT. In addition, the expression of genes related to fatty acid catabolism is also promoted by EPA-PlsEtn supplementation, which may cause the decreased content of saturated and monounsaturated fatty acid-containing PCs. CONCLUSIONS: EPA-PlsEtn supplementation is demonstrated to remodel lipidome and regulate the fatty acid metabolic process in WAT, indicating it may serve as a new strategy for obesity treatment in the future.


Assuntos
Ácido Eicosapentaenoico , Plasmalogênios , Camundongos , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipidômica , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Tecido Adiposo Branco , Fosfatidiletanolaminas/metabolismo , Tecido Adiposo/metabolismo
13.
Histochem Cell Biol ; 160(4): 279-291, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37477836

RESUMO

Toxoplasma gondii is a highly prevalent obligate apicomplexan parasite that is important in clinical and veterinary medicine. It is known that glycerophospholipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn), especially their expression levels and flip-flops between cytoplasmic and exoplasmic leaflets, in the membrane of T. gondii play important roles in efficient growth in host mammalian cells, but their distributions have still not been determined because of technical difficulties in studying intracellular lipid distribution at the nanometer level. In this study, we developed an electron microscopy method that enabled us to determine the distributions of PtdSer and PtdEtn in individual leaflets of cellular membranes by using quick-freeze freeze-fracture replica labeling. Our findings show that PtdSer and PtdEtn are asymmetrically distributed, with substantial amounts localized at the luminal leaflet of the inner membrane complex (IMC), which comprises flattened vesicles located just underneath the plasma membrane (see Figs. 2B and 7). We also found that PtdSer was absent in the cytoplasmic leaflet of the inner IMC membrane, but was present in considerable amounts in the cytoplasmic leaflet of the middle IMC membrane, suggesting a barrier-like mechanism preventing the diffusion of PtdSer in the cytoplasmic leaflets of the two membranes. In addition, the expression levels of both PtdSer and PtdEtn in the luminal leaflet of the IMC membrane in the highly virulent RH strain were higher than those in the less virulent PLK strain. We also found that the amount of glycolipid GM3, a lipid raft component, was higher in the RH strain than in the PLK strain. These results suggest a correlation between lipid raft maintenance, virulence, and the expression levels of PtdSer and PtdEtn in T. gondii.


Assuntos
Fosfatidilserinas , Toxoplasma , Animais , Fosfatidilserinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Toxoplasma/metabolismo , Membrana Celular/metabolismo , Microscopia Eletrônica , Mamíferos/metabolismo
14.
Function (Oxf) ; 4(4): zqad020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342414

RESUMO

The maintenance of phospholipid homeostasis is increasingly being implicated in metabolic health. Phosphatidylethanolamine (PE) is the most abundant phospholipid on the inner leaflet of cellular membranes, and we have previously shown that mice with a heterozygous ablation of the PE synthesizing enzyme, Pcyt2 (Pcyt2+/-), develop obesity, insulin resistance, and NASH. Skeletal muscle is a major determinant of systemic energy metabolism, making it a key player in metabolic disease development. Both the total PE levels and the ratio of PE to other membrane lipids in skeletal muscle are implicated in insulin resistance; however, the underlying mechanisms and the role of Pcyt2 regulation in this association remain unclear. Here, we show how reduced phospholipid synthesis due to Pcyt2 deficiency causes Pcyt2+/- skeletal muscle dysfunction and metabolic abnormalities. Pcyt2+/- skeletal muscle exhibits damage and degeneration, with skeletal muscle cell vacuolization, disordered sarcomeres, mitochondria ultrastructure irregularities and paucity, inflammation, and fibrosis. There is intramuscular adipose tissue accumulation, and major disturbances in lipid metabolism with impaired FA mobilization and oxidation, elevated lipogenesis, and long-chain fatty acyl-CoA, diacylglycerol, and triacylglycerol accumulation. Pcyt2+/- skeletal muscle exhibits perturbed glucose metabolism with elevated glycogen content, impaired insulin signaling, and reduced glucose uptake. Together, this study lends insight into the critical role of PE homeostasis in skeletal muscle metabolism and health with broad implications on metabolic disease development.


Assuntos
Resistência à Insulina , Lipogênese , Camundongos , Animais , Resistência à Insulina/genética , Fosfatidiletanolaminas/metabolismo , Triglicerídeos/metabolismo , Músculo Esquelético/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(20): e2301979120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155911

RESUMO

The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that catalyze phospholipid reorientation in bacteria remain unknown. Studies from almost half a century ago in Bacillus subtilis and Bacillus megaterium revealed that newly synthesized phosphatidylethanolamine (PE) is rapidly translocated to the outer leaflet of the bilayer [Rothman & Kennedy, Proc. Natl. Acad. Sci. U.S.A. 74, 1821-1825 (1977)] but the identity of the putative PE flippase has eluded discovery. Recently, members of the DedA superfamily have been implicated in flipping the bacterial lipid carrier undecaprenyl phosphate and in scrambling eukaryotic phospholipids in vitro. Here, using the antimicrobial peptide duramycin that targets outward-facing PE, we show that Bacillus subtilis cells lacking the DedA paralog PetA (formerly YbfM) have increased resistance to duramycin. Sensitivity to duramycin is restored by expression of B. subtilis PetA or homologs from other bacteria. Analysis of duramycin-mediated killing upon induction of PE synthesis indicates that PetA is required for efficient PE transport. Finally, using fluorescently labeled duramycin we demonstrate that cells lacking PetA have reduced PE in their outer leaflet compared to wildtype. We conclude that PetA is the long-sought PE transporter. These data combined with bioinformatic analysis of other DedA paralogs argue that the primary role of DedA superfamily members is transporting distinct lipids across the membrane bilayer.


Assuntos
Fosfatidiletanolaminas , Fosfolipídeos , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo
16.
Parasitol Res ; 122(7): 1651-1661, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37202563

RESUMO

The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase ß differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.


Assuntos
Amebíase , Entamoeba histolytica , Humanos , Colina/metabolismo , Colina Quinase/metabolismo , Fosfatidiletanolaminas/metabolismo , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Etanolaminas/metabolismo , Etanolamina , Citidina Difosfato Colina/metabolismo , Fosfatidilcolinas , Isoformas de Proteínas , Trifosfato de Adenosina , Cinética
17.
Theriogenology ; 206: 28-39, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178672

RESUMO

The resistance of sperm to freezing varies widely among boars. The semen ejaculate of different boars can be grouped into poor freezability ejaculate (PFE) and good freezability ejaculate (GFE). In this study, five Yorkshire boars each of the GFE and PFE were selected by comparing the changes in sperm motility before and after cryopreservation. Firstly, we found that the sperm plasma membrane of the PFE group showed weak integrity after PI and 6-CFDA staining. Then the electron microscopy results verified that the plasma membrane condition of all segments of GFE was better than that of PFE segments. Furthermore, the lipid composition of sperm plasma membranes in GPE and PFE sperm was analyzed by using mass spectrometry, and 15 lipids showed differences between the two groups. Among those lipids, only phosphatidylcholine (PC) (14:0/20:4) and phosphatidylethanolamine (PE) (14:0/20:4) were higher in PFE. The remaining lipid contents, including those of dihydroceramide (18:0/18:0), four hexosylceramides (18:1/20:1, 18:0/22:1, 18:1/16:0, 18:1/18:0), lactosylceramide (18:1/16:0), two hemolyzed phosphatidylethanolamines (18:2, 20:2), five phosphatidylcholines (16:1/18:2, 18:2/16:1, 14:0/20:4, 16:0/18:3, 18:1/20:2), and two phosphatidylethanolamines (14:0/20:4, 18:1/18:3), were all positively correlated with resistance to cryopreservation (p < 0.05, r > 0.6). Moreover, we analyzed the metabolic profile of sperm using untarget metabolomic. KEGG annotation analysis revealed that the altered metabolites were mainly involved in fatty acid biosynthesis. Finally, we determined that the contents of oleic acid, oleamideetc, N8-acetylspermidine etc., were different between GFE and PFE sperm. In summary, the different lipid metabolism levels and long-chain polyunsaturated fatty acids (PUFAs) in plasma membrane may be key factors contributing to differences in sperm resistance to cryopreservation among boars.


Assuntos
Fosfatidiletanolaminas , Preservação do Sêmen , Suínos , Masculino , Animais , Fosfatidiletanolaminas/metabolismo , Sêmen , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/metabolismo , Criopreservação/veterinária , Criopreservação/métodos , Membrana Celular
18.
J Alzheimers Dis ; 93(4): 1285-1289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182883

RESUMO

Numerous studies have demonstrated defects in multiple metabolic pathways in Alzheimer's disease (AD), detected in autopsy brains and in the cerebrospinal fluid in vivo. However, until the advent of techniques capable of measuring thousands of metabolites in a single sample, it has not been possible to rank the relative magnitude of these abnormalities. A recent study provides evidence that the abnormal turnover of the brain's most abundant phospholipids: phosphatidylcholine and phosphatidylethanolamine, constitutes a major metabolic pathology in AD. We place this observation in a historical context and discuss the implications of a central role for phospholipid metabolism in AD pathogenesis.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Fosfatidiletanolaminas/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Encéfalo/patologia
19.
Plant J ; 115(2): 563-576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058128

RESUMO

An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Fosfatidiletanolaminas/metabolismo , Estômatos de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Luz , ATPases Translocadoras de Prótons/metabolismo
20.
Commun Biol ; 6(1): 306, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949328

RESUMO

Toxoplasma gondii is a prevalent zoonotic pathogen infecting livestock as well as humans. The exceptional ability of this parasite to reproduce in several types of nucleated host cells necessitates a coordinated usage of endogenous and host-derived nutritional resources for membrane biogenesis. Phosphatidylethanolamine is the second most common glycerophospholipid in T. gondii, but how its requirement in the acutely-infectious fast-dividing tachyzoite stage is satisfied remains enigmatic. This work reveals that the parasite deploys de novo synthesis and salvage pathways to meet its demand for ester- and ether-linked PtdEtn. Auxin-mediated depletion of the phosphoethanolamine cytidylyltransferase (ECT) caused a lethal phenotype in tachyzoites due to impaired invasion and cell division, disclosing a vital role of the CDP-ethanolamine pathway during the lytic cycle. In accord, the inner membrane complex appeared disrupted concurrent with a decline in its length, parasite width and major phospholipids. Integrated lipidomics and isotope analyses of the TgECT mutant unveiled the endogenous synthesis of ester-PtdEtn, and salvage of ether-linked lipids from host cells. In brief, this study demonstrates how T. gondii operates various means to produce distinct forms of PtdEtn while featuring the therapeutic relevance of its de novo synthesis.


Assuntos
Toxoplasma , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Fosfatidiletanolaminas/metabolismo , Éter/metabolismo , Glicerofosfolipídeos/metabolismo , Etil-Éteres/metabolismo , Éteres/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...